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This paper presents multi-path, two-photon excitation cross-section calculations for krypton, using first-order
perturbation theory. For evaluation of the two-photon-transition matrix element, this paper formulates the two-
photon cross-section calculation as a matrix mechanics problem. From a finite basis of states, consisting of 4p,
5s , 6s , 7s , 5p, 6p, 4d, 5d, and 6d orbitals, electric dipole matrix elements are constructed, and a Green’s function
is expressed as a truncated, spectral expansion of solutions, satisfying the Schrödinger equation. Electric dipole
matrix elements are evaluated via tabulated oscillator strengths, and where those are unavailable, quantum-defect
theory is used. The relative magnitudes of two-photon cross-sections for eight krypton lines in the 190–220 nm
range are compared to experimental excitation spectra with good agreement. This work provides fundamental
physical understanding of the Kr atom, which adds to experimental observations of relative fluorescence inten-
sity. This is valuable when comparing excitation schemes in different environments for krypton fluorescence
experiments. We conclude that two-photon excitation at 212.556 nm is optimal for single-laser, krypton tagging
velocimetry or krypton planar laser-induced fluorescence. ©2020Optical Society of America

https://doi.org/10.1364/AO.410806

1. INTRODUCTION

There are multiple excitation lines for the two-photon excita-
tion of Kr in the 190–220 nm range: 192.749 nm, 193.494 nm,
193.947 nm, 202.316 nm, 204.196 nm, 212.556 nm,
214.769 nm, and 216.667 nm. The optimal choice of exci-
tation line for krypton fluorescence experiments is subject to test
requirements, such as signal-to-noise ratio (SNR), background
luminosity, and, in the case of krypton tagging velocimetry
(KTV), the write/read delay time. When determining the opti-
mal scheme for krypton fluorescence experiments, evaluating
the two-photon cross-section is the starting point and, as such,
the motivation for the current work.

Methods for calculating two-photon cross-sections include
first-order perturbation theory, the Green’s function method,
R-matrix theory, and time-dependent density-functional theory
(TDDFT). First-order perturbation theory for multiphoton
excitation and ionization is described by Lambropoulos [1]
who provides a thorough review of multiphoton processes and
calculations, and demonstrates the matrix mechanics nature
of the problem. Khambatta et al. [2,3] uses the first-order
perturbation theory of Lambropoulos [1] and the oscillator
formulas from Hillborn [4] to calculate two- and three-photon

cross-sections for argon and krypton. He presents both a single-
path and multi-path calculation. However, that calculation is
limited by the availability of tabulated Einstein coefficients.
Additionally in that work, the dipole matrix element is asym-
metric, thus unable to capture the mathematical symmetry of
the two-photon transition matrix element. A similar single-path
calculation for the excitation of Kr to the 6p level was made
by Bokor et al. [5]. The calculations in Bokor et al. [5] and
Khambatta et al. [2,3] serve as important benchmarks for two-
photon cross-section calculation and (2+ 1) photoionization
modeling. Mustafa et al. [6] used the single-path approximation
to estimate the two-photon cross-section for the 212.556 nm
excitation line for krypton. An additional motivation for the
current work was to assess the validity of the results of Mustafa
et al. [6] and explore whether other excitation lines might result
in higher fluorescence.

In the first-order perturbation formulation of multiphoton
excitation, infinite excitation pathways exist, and summation
occurs over an infinite space of virtual states, both bound and
unbound. If one does not assume a functional form for a finite
(truncated) basis of virtual states, the calculation of the multi-
photon transition matrix element can be difficult. Numerous
researchers developed alternative techniques to avoid explicitly
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summing over a finite basis of states using an analytical Green’s
function. By making a central-field approximation, and by
applying quantum-defect theory (QDT), a phenomenological
Green’s function was derived, as done in both Lambropoulos
[1] and McGuire [7,8]. The main problem with this Green’s
function approach is the lack of spectral resolution; that is, the
phenomenological Green’s function for two-photon excitation
is unable to resolve fine-structure effects, which are necessary
to calculate closely clustered excitation spectra. Despite this, it
provides good estimates of the magnitude of the two-photon
cross-section.

TDDFT is a modern computational approach to modeling
time-dependent quantum systems [9]. It can be used to generate
excitation spectra for atoms and molecules. However, for a large
atom such as krypton with many electrons, an accurate, initial
guess for charge distribution and wave functions would need to
be made, especially to observe fine-structure effects. R-matrix
theory represents another approach to multiphoton excitation
[10]. It directly solves the Schrödinger equation. However, it is
more computationally difficult to implement for a large multi-
electron atom such as Kr, and currently, only a formulation for
multiphoton ionization is readily available.

As stated, the motivation for this work is krypton fluores-
cence experiments, which have attracted great interest over the
last decade because of their promise in making fundamental
contributions in subsonic and supersonic combustion in addi-
tion to supersonic and hypersonic aerodynamics [11]. Two
such experiments are krypton planar laser-induced fluorescence
(Kr-PLIF) and KTV. Kr-PLIF and KTV are performed by the
addition of a small mole fraction of Kr to a high-speed/reacting
flow. This strategy has enabled the non-intrusive measurement
of important quantities such as density, temperature, mix-
ing fraction, and velocity that were not previously possible in
difficult-to-measure gas flows.

Initial Kr-PLIF work was performed at 214.7 nm [12–16],
which now includes thermometry [17–19]. Additionally, the
204.196 nm line has also been used for Kr-PLIF [20–22].
Experimental Kr-PLIF excitation line comparisons have
been performed by [23,24], with the observation that the
212.556 nm line was superior. High-speed Kr-PLIF was per-
formed at 212.556 nm by Grib et al. [25]. Original KTV work
relied on write-line excitation at 214.769 nm to generate the
metastable Kr state [26–31]. In more recent KTV work [6,32]
and in this paper, we observe higher SNR for single-laser,
unfiltered KTV with a 212.556 nm write-line excitation; addi-
tionally, we observe that two-photon excitation at 216.667 nm
is optimal for two-laser KTV where there is a need for spatial
filtering to eliminate background luminosity.

In this paper, we calculate the two-photon cross-sections
of Kr to (1) remove any ambiguity in the superiority of the
212.556 nm line for Kr-PLIF and single-laser KTV; (2) provide
fundamental physical insights to verify the Richardson et al.
[23] excitation spectrum; (3) provide reliable cross-sections
for modeling other Kr excitation schemes; and (4) prepare a
framework for calculating multiphoton excitation spectra for
other noble gas atoms. Herein, we detail our calculation method
and compare the results of those calculations to experimental
results with success.

2. RELATION OF CROSS-SECTION TO
SIGNAL-TO-NOISE RATIO

By definition, the fluorescence signal, Q, from an atomic transi-
tion is calculated per Eckbreth [33] as

Q = h fe Nu A�V /(4π), (1)

where h is Planck’s constant, fe is the frequency of emitted light,
Nu is the population of the upper level, A is the overall Einstein
coefficient,� is the collection solid angle, and V is the emitting
volume. As Eq. (1) shows, SNR∝ Q ∝ Nu .

During a laser pulse, the two-photon excited state
population, denoted by N f , is governed by

d N f

dt
=W f ,g Ng − (Wpi + A f +W f ,g + q)N f , (2)

where W f ,g is the two-photon excitation rate from the ground
state |g 〉 to the final state, Wpi is one-photon photoionization
rate from final state | f 〉 to the ionized state, Ng is the population
of the ground state Kr atoms, A f is the overall Einstein coeffi-
cient, and q is the quenching rate for the excited state. At the
rising edge of the laser pulse, N f is small and is approximately
proportional to W f ,g :

N f ≈W f ,g Ng1t . (3)

The one-photon photoionization rate Wpi in Eq. (2) is

Wpi = F σpi , (4)

where the photoionization cross-section σpi is calculated by
Khambatta et al [2] as

σpi =
8× 10−18

Ze

√
−E f
R y

(
~ωL
−E f

)3 . (5)

In Eq. (5), Ze = 1 is the charge of the Kr ion, R y is the
Rydberg constant, and E f is the energy of the final state. The
one-photon photoionization cross-section σpi is approximately
the same for the different Kr excitation lines because of the
closely clustered energies of the eight states. Therefore, the two-
photon cross-section σ (2)o is the most significant in determining
the excitation spectrum for the Kr lines. Researchers, such as
Saito et al. [34] and Khambatta et al. [2], respectively, developed
detailed analytical and numerical population models, featuring
Eq. (2). In this work, the solution to Eq. (2) is not explored
beyond Eq. (3).

W f ,g is defined as

W f ,g = F 2σ (2), (6)

where σ (2) is the two-photon excitation rate coefficient, and
F = I/(~ωL) is the photon flux. I is the laser intensity; ~ is
the reduced Planck’s constant; and ωL is the laser angular fre-
quency. The rate coefficient, σ (2), is a function of the excitation
wavelength and is directly proportional to the cross-sectionσ (2)o .
Consequently, the wavelength with the highest value of σ (2)o will
result in the highest fluorescence signal after the laser pulse. That
is, SNR∝ σ (2)o right after the rising edge of the laser pulse.
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3. TWO-PHOTON CROSS-SECTION
CALCULATION FOR KRYPTON IN THE
190–220 NM EXCITATION RANGE

A two-photon cross-section calculation was conducted
using multi-path, first-order accurate perturbation theory.
A Hartree–Fock radial wave function of the krypton ground
state (4p6 1S0) was assumed [35], and oscillator strength (OS)
formulas were used upon the availability of NIST transition
probabilities and data [36] (Russell–Saunders Notation 2S+1L J

with, S = 0, L = 0 and. J = 0). We note that a Kr gas mixture
with naturally occurring isotope mole fractions was considered
because the NIST line spectra database presents spectroscopic
data for a naturally occurring mixture of Kr [36], and the laser
pulse width is at least two orders of magnitude greater than
the isotopic shifts of Kr. Additionally, QDT was used to cal-
culate electric dipole matrix elements when NIST transition
probabilities were unlisted. This last inclusion of QDT is key
to the success of our approach, as it enabled the inclusion of
additional excitation pathways not included in previous works;
and it determined the sign of all pathway contributions to the
two-photon matrix element.

When QDT is used to evaluate the purely radial matrix
elements, 〈r 〉 scaled hydrogen radial wave functions are
constructed to represent excited Kr states. This is because a
Hartree–Fock calculation showed that excited krypton states
exhibited hydrogenic behavior and could be approximated well
by quantum-defect radial wave functions that are calibrated by
NIST line data.

The two-photon cross-section σ (2)o is independent of laser
intensity, time, and Kr concentration. It is a constant, and it is a
solution to the time-independent, non-relativistic Schrödinger
equation (relativistic effects were neglected in the Schrödinger
equation because the energy of the laser was much less than the
rest energy of an electron 3~ωL �me c 2 [37]). At the rising
edge of the laser pulse, σ (2)o ∝ σ

(2)
∝ Q ∝ SNR [33]. The two-

photon cross-sectionσ (2)o is related to the two-photon excitation
rate-coefficientσ (2) via the lineshape function g (2ωL) as

σ (2) = σ (2)o g (2ωL). (7)

The two-photon excitation cross-section is calculated as

σ (2)o = (2π)
3(α)2ω2

L |M
(2)
f g |

2
a4

o , (8)

where α is the fine structure constant, ao is the Bohr radius, and
M(2)

f g is the two-photon-transition matrix element. The line
shape function g (2ωL) is assumed to be of Gaussian form with a
peak:

g (2ωL =ωT)=
2
√

ln(2)/π√
2(1ωL)2 + (1ωT)

2
. (9)

The linewidth of the laser is1ωL (1350 MHz in this work),
and the Doppler linewidth,1ωT , is calculated by

1ωT = (2ωL)

√
8ln(2)kb T

mkr c 2
, (10)

where kb is the Boltzmann constant, c is the speed of light, mkr is
the mass of one krypton atom, and T is the temperature of the Kr
gas mixture.

The two-photon-transition matrix element is expressed as

M(2)
f g =

∞∑
k=g

〈
f
∣∣ε̂ · Er ∣∣ k

〉 〈
k
∣∣ε̂ · Er ∣∣ g

〉
ωk −ωg −ωL

. (11)

For practical calculation on a computer, the summation over
the intermediate state index k is truncated at the Nth state.
Therefore, the transition matrix element,

M(2)
f g =

N∑
k=g

〈
f
∣∣ε̂ · Er ∣∣ k

〉 〈
k
∣∣ε̂ · Er ∣∣ g

〉
ωk −ωg −ωL

, (12)

is summed over a finite basis of states, such as those listed in
Table 3. The truncation criterion for two-photon excitation is
determined by a constraint on the maximum principal quan-
tum number n of a bound state: nmax. As n becomes large, the
expected radius of a one-electron atom of effective nuclear
charge Ze is 〈r 〉 = n2/Ze in Bohr radii [38]. Per Park [39], the
〈r 〉 is proportional to the Debeye length dD:

nmax =

√
Ze dD

10ao
≈

 Z2
e εo kb

e 2
(

Ne
Te V +

Ne
TV

)
(10ao )

2

 1
4

, (13)

where Ne/V is the electron number density, Ni/V is the ion
number density, Te is the electron temperature, and Ti is the
Kr ion temperature. The factor of 10ao describes approxi-
mately the krypton van der Waals diameter and represents a
90% reduction in the Debeye potential, 8D, which is non-
dimensionally described by8D = 1/r exp(−r ao/dD). For the
(2+ 1) resonance-enhanced multiphoton excitation (REMPI)
of Kr at laser wavelength λL = 212.556 nm, room temperature
T = 298 K, and pressure P = 1 torr, the electron tempera-
ture is Te = 27626 K, and number densities are calculated as
Ne/V = Ni/V = 1.62× 1021 electrons/m3. The electron
temperature was obtained from 2(3~ωL − |E ion|)/3(kb) [40],
and number densities were obtained via the analytical popula-
tion model of Saito et al. [34]. Assuming Ze = 1 for the Kr ion,
the result is nmax = 7.42. Therefore, N accommodates all states
with a principal quantum number equal to or less than 7: n ≤ 7.
This is convenient because NIST transition probability data are
limited for states with n ≤ 8 [36].

An approximate Green’s function, expressed as a truncated
spectral expansion, is nested in the center of the expression for
M(2)

f g :

G(Er , Er ′)=
N∑

k=g

|k〉〈k|
ωk −ωg −ωL

. (14)

Since Green’s functions are symmetric about variable
exchange (Er ↔Er ′), G(Er , Er ′)= G(Er ′, Er ), so M(2)

f g =M(2)
g f . This

mathematical property is a fundamental deviation from the OS
approach in Khambatta et al. [2], which is one-sided and asym-
metric. Therefore, the use of oscillator formulas, while valid,
causes the loss of symmetry in the transition matrix element.
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This symmetry loss is problematic in describing higher-order
multiphoton excitation (three-photon and higher).

M(2)
f g is a double tensor contraction of an infinite matrix

space, M = DG D. More importantly, due to the invariance of
multiphoton excitation with respect to the reference frame and
basis |k〉, M = DG D is a symmetric, rank-2 tensor.

The evaluation of M(2)
f g requires the evaluation of two reduced

matrix elements of the form

〈i |ε̂ · Er | j 〉 = Di j , (15)

where Di j is an element of the matrix representation of the
dipole operator D:

D=



〈
g |ε̂ · Er |g

〉 〈
g |ε̂ · Er |1

〉
· · ·

〈
g |ε̂ · Er |N

〉
〈
1|ε̂ · Er |g

〉 〈
1|ε̂ · Er |1

〉
· · ·

〈
1|ε̂ · Er |N

〉
〈
2|ε̂ · Er |g

〉 〈
2|ε̂ · Er |1

〉
· · ·

〈
2|ε̂ · Er |N

〉
...

...
. . .

...〈
N|ε̂ · Er |g

〉 〈
N|ε̂ · Er |1

〉
· · ·

〈
N|ε̂ · Er |N

〉


. (16)

The two indices i , j of the matrix D represent the final state
|i〉 and initial state | j 〉, respectively. The dipole operator, ε̂ · Er ,
describes the rotation of two electric charges of opposite sign by
an external electric field. The denominator of Eq. (12),

G i i =
1

ωi −ωg −ωL
, (17)

can also be rewritten in matrix form as a diagonal matrix G :

G =


1

ωg−ωg−ωL
0 · · · 0

0 1
ω1−ωg−ωL

. . .
...

...
. . .

. . .
...

0 0 · · ·
1

ωN−ωg−ωL

 . (18)

G is the matrix representation of the Green’s function,
Eq. (14). Rewriting Eq. (12), the transition matrix element can
be represented in matrix form:

M(2)
f g =

N∑
k=g

D f k Gkk Dkg = ê T
f DG Dê g , (19)

where ê i is a unit vector that identifies the state of the system. For
example, the vector representations of states |g 〉, |1〉, |2〉, and
|N〉 are

ê g =


1
0
0
...
0

 , ê1 =


0
1
0
...
0

 , ê2 =


0
0
1
...
0

 , and ê N =


0
0
0
...
1

 .

(20)

Equation (19) substantiates to a rank-2 tensor contraction of
the Green’s function matrix G . The f th row of matrix D is post-
multiplied by the matrix G , which is then post-multiplied by the
g th column of matrix D, resulting in the scalar M(2)

f g .

A. Calculation of Dipole Matrix Elements Dij

Using QDT

In this section, the dipole matrix elements Di j are calculated
via the central-field approximation [38,41], which allows one
to separate the effects of angular and radial components in
the Schrödinger equation, expressed in spherical coordinates.
This allows a state |k〉 to be expressed as a product of one-
electron, radial wave functions Rnl (r ) ·

∏
p R p(r p) multiplied

by a tensor spherical harmonic YLS
JM(θ, φ). Here, subscript p

denotes an unexcited krypton electron, and nl denotes the
quantum numbers of the valence electron to be excited by the
laser. This state is represented as |nLSJM〉, assuming L S spin–
orbit coupling. The radius of the excited valence electron from
the Kr nucleus is r . The orientation of its angular momentum
is described by azimuth angle θ and polar angle φ. The set of
all principal quantum numbers for the Kr atom is n, and the
principal quantum number of the excited electron is n. L is the
total orbital angular momentum quantum number of the atom,
and l is the single-electron angular momentum number of the
excited electron. S is the total electron spin quantum number
of the atom. For a true dipole moment transition, S remains
constant because the dipole moment operator ε̂ · Er does not act
on electron spin coordinates. The dipole moment operator is
written solely in terms of scalar spherical harmonics [41]:

ε̂ · Er =

√
4π

3
r

∑
q=(0,±1)

εq Y q
1 , (21)

where the polarization component is q = 0 for linear polariza-
tion; q = 1 for right-handed circular polarization; and q =−1
for left-handed polarization of the laser’s electric field [42]. The
orientation of the laser electric field defines the orientation of the
z axis in the spherical coordinate system imposed on the nucleus
of a Kr atom.

To evaluate the reduced matrix elements Di j , a sim-
plified expression must first be obtained. By applying the
Wigner–Eckart Theorem [42], Di j may be rewritten as

Di j =
〈
i
∣∣ε̂ · Er ∣∣ j

〉
=
〈
ni L i Si J i Mi

∣∣ε̂ · Er ∣∣ n j L j S j J j M j
〉

=
〈
ni L i Si J i |Er | n j L j S j J j

〉
×

∑
q=(0,±1)

εq

(
J i 1 J j

−Mi q M j

)
(−1)1−J j−Mi . (22)

By using the definition of a vector Er = r ê r , radial coordinates
are separated from angular coordinates:

Di j = 〈i |r | j 〉
〈
L i Si J i

∣∣ê r

∣∣L j S j J j
〉

×

∑
q=(0,±1)

εq

(
J i 1 J j

−Mi q M j

)
(−1)1−J j−Mi . (23)
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Using the following expression from Messiah {[42] (Eq.
C.89)} for reduced matrix elements and irreducible tensor
operators of tensor rank k,〈

τ1τ2 J1 J2 J |T(k)
|τ1′τ2′ J1′ J2′ J ′

〉
= δτ2τ2′ δJ2 J2′

〈
τ1 J1

∣∣T(k)
∣∣τ1′ J1′

〉
(−1)J ′+J1+J2+k

×

√
(2J + 1)(2J ′ + 1)

{
J1 k J1′

J ′ J2 J

}
, (24)

the angular term 〈L i Si J i |ê r |L j S j J j 〉 can be further simplified,
noting τ1 = τ

′
1 = τ2 = τ

′
2 = 1. The reduced matrix element Di j

becomes

Di j = δSi S j 〈r 〉
〈
L i

∣∣ê r

∣∣L j
〉
(−1)L i+J j+Si+1

×
√
(2J i + 1)(2J j + 1)

{
L i 1 L j

J j S j J i

}
×

∑
q=(0,±1)

εq

(
J i 1 J j

−Mi q M j

)
(−1)1−J j−Mi , (25)

where 〈r 〉 = 〈i |r | j 〉 is the purely radial matrix element. The
term δSi S j implies that the dipole moment operator does not
act on electron coordinates. Next, using the Wigner–Eckart
theorem [42] for the expected value of a spherical tensor Yk of
rank k,

〈l1|Yk |l2〉 = (−1)l1
√
(2l1 + 1)(2k + 1)(2l2 + 1)

4π

(
l1 k l2

0 0 0

)
,

(26)

the expected value of the rank-1 unit vector, ê r , 〈L i |ê r |L j 〉, can
be evaluated. Di j becomes

Di j = δSi S j 〈r 〉
√
(2L i + 1)(2L j + 1)

×

(
L i 1 L g

0 0 0

)√
(2J i + 1)(2J j + 1)

× (−1)2L i+J j+Si+1

{
L i 1 L j

J j S j J i

}
×

∑
q=(0,±1)

εq

(
J i 1 J j

−Mi q M j

)
(−1)1−J j−Mi , (27)

which rearranges into

Di j = δSi S j 〈r 〉
√
(2J i + 1)(2J j + 1)(2L i + 1)(2L j + 1)

×

(
L i 1 L g

0 0 0

) {
L i 1 L j

J j S j J i

}
(−1)2L i+J j+Si+1

×

∑
q=(0,±1)

εq

(
J i 1 J j

−Mi q M j

)
(−1)1−J j−Mi .

(28)

For allowable dipole transitions, the effect of the factor of
−1−J j−Mi+1, which arises from the definition of the Wigner–
Eckart Theorem, has no effect on the transition matrix element
summation due to the consistent parity of J , as shown in
Table 1.

The 2× 3 matrix terms in parentheses are 3 j -Wigner sym-
bols, and the 2× 3 matrix term in brackets is the 6 j -Wigner

Table 1. Parity Table for Term
a, b

J j 0 1 2

Mi 0 1 0 −2 0 3
−1−J j−Mi+1

−1 1 1 1 −1 1
a
−1−J j−Mi+1 J j = 0, 1 corresponds to two-photon transitions, and

J j = 0, 1, 2 corresponds to three-photon transitions.
bThe term −1−J j−Mi+1 does not contribute to the transition matrix element

summation because it is consistently the same value for each stage of a multi-
photon transition for all possible pathways.

Table 2. Addition of the Angular Momentum of Two
Electrons l1 and: EL=El1 +El2 (m= 0 for both electrons)

State L2 = l2
1 + l2

2 + 2El1 ·
El2 L J

|g 〉 12
+ 12
+ 2(1)(−1)= 0 0 0

|k〉 12
+ 02
+ 2(1)(0)= 1 1 1

| f 〉 12
+ 12
+ 2(1)(±1)=

{ 4
0

} { 2
0

} { 2
0

}

symbol. 3 j -Wigner symbols enforce dipole moment selection
rules, and the 6 j -Wigner symbol quantifies the degeneracy of a
transition occurring (it amounts to a normalization factor). Our
research considers only linear polarization of the laser electric
field, q = 0, forcing Mi =M j = 0 for all transitions j→ i ,
Si = S j = 0 for all transitions because the Kr ground state has
a total electron spin of zero, and the dipole moment operator
ε̂ · Er does not act on electron spin coordinates. L i is the norm
of the addition of two angular momenta, L i = |Eli + Elg |, which
describes the angular momentum coupling between the excited
electron and a 4p valence electron of opposite electron spin.
Since the dipole moment operator does not operate on electron
coordinates, it turns out that L i = J i for the dipole transitions
we analyzed. A sketch summarizing how angular momentum
changes during (2+ 1)-photoionization is shown in Fig. 1, and
an angular momentum table is provided in Table 2 to show how
to calculate the coupled quantum L from the angular momenta
of two electrons, each with an azimuth orbital quantum number
m = 0.

Therefore, the simplified dipole matrix element is

Di j = δli ,l j±1〈r 〉(2J i + 1)(2J j + 1)

(
J i 1 J j

0 0 0

)2 {
J i 1 J j

J j 0 J i

}
,

(29)

noting that for a dipole transition, 1l =±1. The factor of
(−1)2L i+J j+Si+1 is omitted because it does not contribute any
meaningful sign change in the summation. For dipole moments,
parity is conserved, resulting in consistent state parity. Si + 1
is always one; 2L i is always even; and−1J j is consistent for all
considered transitions. More interestingly, due to the consistent
parity of J for transition states, Eq. (29) is symmetric about
variable exchange, i↔ j which conforms to the symmetry
property of a Green’s function, Eq. (14). Using identity (C.37)
from [42], Eq. (29) can be further simplified to

Di j = δli ,l j±1〈r 〉
√
(2J i + 1)(2J j + 1)

(
J i 1 J j

0 0 0

)2

. (30)

Now, the main difficulty with calculating Di j is the
evaluation of the radial wave function integral 〈r 〉:
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Fig. 1. Angular momenta of a Kr atom during linearly polarized (2+ 1) multiphoton photoionization. This sketch demonstrates LS spin–orbit
coupling for each Kr state at each stage of excitation: ground state |g 〉, intermediate state |k〉, two-photon state | f 〉, and ionized state e−. For dipole
transitions,1S = 0 and, consequently, J = L .
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Fig. 2. Comparison between Hartree–Fock (HF) radial orbitals
and quantum-defect (QD) radial orbitals. The Clementi 4p radial
wave is described in [35]. This plot demonstrates the hydrogen-like
behavior of Kr radial wave functions. This plot justifies the use of
quantum-defect orbitals and validates Rydberg’s original observation
of the hydrogenic behavior of excited atoms [43].

〈r 〉 =
〈
Ri (r )|r |R j (r )

〉∏
p

〈
Ri,p(r p)|R j ,p(r p)

〉
=

∫
∞

0
r 3 Ri (r )R j (r )dr , (31)

because the form of the wave functions Ri (r )must be assumed
from prior knowledge. The one-electron model of Kr also
assumes that only the radial wave function of the excited elec-
tron changes, an assumption justified by a Hartree–Fock
calculation [35]. Therefore,

∏
p〈Ri,p(r p)|R j ,p(r p)〉 = 1 due to

the normalization of the radial wave functions.
Excited states of noble gas atoms approximate one-electron

atoms, and to first order, electric dipoles. QDT correctly
assumes that the excited states of atoms exhibit scaled,
hydrogen-like behavior, as verified by our Hartree–Fock
calculation shown in Fig. 2. This observation was first made by
Rydberg [43] and was later exploited by Bethe et al. [37], Bebb
et al. [44], and McGuire [7,8]. While Hartree–Fock iterates for
an explicit electron repulsion potential [35,41], QDT directly

incorporates the effect of electron repulsion through the use of
excited state energy as an input to scale the wave function. With
the verified assumption of hydrogenic behavior for excited Kr
states, quantum-defect radial wave functions can be used with
confidence to describe the excited states of Kr.

Properly normalized hydrogen radial wave functions [45] are
expressed as

Rnl (r )=

√√√√[ (n − l − 1)!

2n((n + l)!)

(
2Ze

n

)3
](

2Ze r
n

)l

× exp

(
−Ze r

n

)
L2l+1

n−l−1

(
2Ze r

n

)
, (32)

with effective nuclear charge Ze = 1 and energy En =−R y/n2.
Meanwhile, quantum-defect radial wave functions [43]
are scaled hydrogen radial wave functions and are written
similarly as

Rnl (E , Im, r )=
2

(n∗)2

√
0(n − l − Im(l))
0(n∗ + l∗ + 1)

(
2r
n∗

)l

× exp

(
−r
n∗

)
L2l∗+1

n−l−Im (l)−1

(
2r
n∗

)
, (33)

where the effective principal quantum number is

n∗ = n − δd , (34)

the quantum defect is

δd = n −

√
−R y

E
, (35)

and the effective angular momentum quantum number is

l∗ = l − δd + Im(l). (36)

0 is the gamma function; ( )! is the factorial function; and
L y

n(x ) is the associated Laguerre polynomial function of degree
n and input y evaluated at x . Eq. (33) is a scaled version of
Eq. (32).

Quantum-defect radial wave functions are generated by four
input parameters, n, l , E , and Im , which are determined by
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NIST data [36] and are listed in Table 3 for a basis of Kr states.
n and l are reported in the Racah notation of a state. Absolute
energy E is obtained by subtracting the first ionization energy
of Kr (13.9996053 eV) from the reported NIST energy because
NIST reports energy relative to the ground state. For the selec-
tion of the integer, Im Einstein coefficients are used to ensure
that the radial wave functions reflect experimental observations.
Also, (δd − l − 1/2)≤ Im < (n − l − 1) [43]. By minimizing
the discrepancy between calculated Einstein coefficients [4],

Ai j =
2e 2ω3

i j a
2
o

3c 3hεo

∑
m j

∣∣〈ni li mi |Er |n j l j m j
〉∣∣2, (37)

and tabulated NIST Einstein coefficients through integer varia-
tion of Im , acceptable radial wave functions are constructed for
excited Kr states.

The initial state |i〉 has a degenerate azimuth quantum num-
ber mi . In a pure dipole moment transition, the only active
quantum number is the angular momentum quantum number
l . Unlike Hillborn [4], a weighted summation must take place
over both mi and m j to account for the degeneracy of both
quantum numbers in an isotropic electric field: q = 0,±1.
Therefore,

Ai j =
2e 2ω3

i j a
2
o

3c 3hεo

∑
mi

1
√
wt

∑
m j

∑
q=0,±1

|〈ni li mi |Er |n j l j m j 〉|
2

=
2e 2ω3

i j a
2
o

3c 3hεo

[
〈r 〉

√
(2li + 1)(2l j + 1)

wt

(
li 1 l j

0 0 0

)]2

=
2e 2ω3

i j a
2
o

3c 3hεo

[
〈r 〉

1
√

3

]2

for s ⇔ p transitions

=
2e 2ω3

i j a
2
o

3c 3hεo

[
〈r 〉

√
2

9

]2

for p⇔ d transitions,
(38)

where wt is the number of nonzero transitions produced by
the degeneracy of mi and m j in an isotropic radiation field.
1/wt is the probability of a transition occurring. For fixed li

and l j , the value of wt can be determined from the number of
nonzero Clebsch–Gordon coefficients for varying mi , m j and
polarization component q . For s ↔ p transitions, wt = 3, and
for p↔ d transitions, wt = 9. Eq. (38) amounts to practical
means to calculate Einstein coefficients from a set of radial wave
functions. Results are shown in Table 4. For the ground state |g 〉,
a Hartree–Fock radial orbital, composed of a linear combination
of Slater-type orbitals (STOs), from Clementi et al. [35] is used:

R4p(r )= 0.08488× STO(2, 17.03660, r)

+ 0.00571× STO(2, 26.04380, r)

+ 0.04169× STO(3, 15.51000, r)

− 0.07425× STO(3, 9.49403, r)

− 0.26866× STO(3, 6.57275, r)

+ 0.01341× STO(4, 5.38507, r)

+ 0.51241× STO(4, 3.15603, r)

+ 0.42557× STO(4, 2.02966, r)

+ 0.18141× STO(4, 1.42733, r), (39)

where the normalized STO function is defined as

STO(n, ζ, r )=
1

√
(2n)!

(2ζ )(n+1/2)r n−1e−ζ r . (40)

This ground-state Hartree–Fock radial wave function
assumes a spherically symmetric electric charge distribution and
accounts to first order the electron repulsion exerted on a 4p
electron.

In Table 4, Einstein coefficients are calculated via Eq. (38)
with varying accuracy but to the correct order of magnitude.
The QDT parameter, Im , is tuned to maximize the accuracy of
Ai j . By obtaining the correct order of magnitude and in some
cases the correct Einstein coefficient, Table 4 further validates
the use of quantum-defect radial wave functions Eq. (33).

With a basis of wave functions calibrated on NIST atomic
spectra data, Eqs. (19) and (8) are evaluated directly, producing
the two-photon cross-section data shown in Fig. 3. The values of
cross-sections are shown in Tables 5–7. When quantum-defect
radial wave functions are used in conjunction with OS formulas
for linear polarization [3], such as

〈
i |ε̂ · Er | j

〉
=

√
3Ai j hc 3εo

2e 2ωi j

√
2J i + 1

(
J i 1 J j

0 0 0

)
, (41)

good agreement is obtained with the Richardson et al. [23]
excitation spectrum, especially using basis sets 2 and 3, which
include d orbitals.

The resulting approach is a hybrid method for the evaluation
of dipole matrix elements, consisting of quantum-defect theory
and where possible, OS. Another contribution of quantum-
defect theory is the prediction of the sign of the radial matrix
element from the evaluation of Eq. (31). The OS, Eq. (41),
must retain the same sign as Eq. (31) and Eq. (29). This sign
determines which excitation pathways make constructive and
destructive contributions to the two-photon transition matrix
element. Also, wherever Eq. (41) is used for the evaluation of a
matrix element, the equality Di j = D j i must be used to ensure
symmetry. This properly interfaces QDT with OS formulas,
creating the hybrid dipole matrix element evaluation method
and thus allowing for the eventual extension of Eq. (19) to
general multiphoton excitation. For example, for three-photon
excitation, the entire dipole matrix D is used:

M(3)
f g =

N∑
k=g

N∑
p=g

DfkGkk DkpGpp Dpg = ê T
f DGDGDê g . (42)

When using a hybrid dipole matrix element calculation
scheme, selection of states with adequate experimental data
is crucial for reasonable results. Insufficient transition proba-
bility data rendered some state omissions in the finite basis of
states listed in Table 3. For example, only one 4d orbital state,
|21〉, was used in basis sets 2 and 3 (Tables 6 and 7) because it
had the highest observed transition probability of all 4d states
between itself and ground, and it had the highest experimentally
measured transition probability between itself and a 5p state:
|21〉→ |10〉. It was the only state with high transition proba-
bilities between 4d and 5p levels. More importantly, state |21〉
exhibited dipole-moment behavior, which could be described
by quantum-defect theory. The effect of other 4d orbitals on
the excitation process is small but can be better determined once
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Fig. 3. Two-photon excitation cross-sections using basis set 3 as the basis of intermediate states, which include 5s, 6s, 7s, 4d , 5d , and 6d states. Via
quantum-defect theory (QDT) and oscillator strength formulas, cross-sections were calculated and compared to the excitation data of Richardson
et al., Grib et al., and our laboratory. Richardson data were obtained by fs-laser excitation in a 1 bar, 95% Ar/5% gas mixture. Grib data were obtained
by both fs-laser and ns-laser excitations in a 1 atm, 77% N2/33% Kr gas mixture. Our laboratory data were obtained via ns-laser excitation in a 1 torr,
99% N2/1% Kr gas mixture to minimize collisional effects. Calculated cross-sections and normalized experimental excitation data are listed in
Appendix A.

more transition probabilities become available for transitions
between 4d and 5p states. However, the inclusion of other
4d states will not significantly change the excitation spectrum
shown in Fig. 3. The same reasoning was made for the inclusion
of 5d and 6d states in basis set 3.

4. EXPERIMENTAL SETUP

A frequency-doubled Quanta Ray Pro-350 Nd:YAG laser
pumping a frequency tripled Sirah PrecisionScan Dye Laser
(DCM dye, DMSO solvent) is the approach used for nanosec-
ond excitation in this work. A schematic of the optical setup
is shown in Fig. 4. The Nd:YAG laser pumps the dye laser
with 1000 mJ/pulse at a wavelength of 532 nm. The dye laser
is tuned to output a 637.67/644.31/650.01 nm beam and

Fig. 4. Schematic of experimental setup. PDG, pulse delay
generator.

frequency tripling (Sirah THU 205) of the dye laser output
results in a 212.56/214.77/216.67 nm beam, with 3 mJ energy,
1350 MHz linewidth, and 7 ns pulsewidth at a repetition rate
of 10 Hz. The write beam was focused into the test cell with
a 200 mm focal length, fused-silica lens. The beam fluence
and spectral intensity at the waist were 1.28× 104 J/cm2 and
1.35× 103 W/(cm2Hz), respectively. The intensified CCD
camera used for all experiments was a Princeton Instruments
PIMAX-4 (PM4-1024i-HR-FG-18-P46-CM) with a Nikon
NIKKOR 24-85 mm f/2.8-4D lens in “macro” mode and posi-
tioned approximately 200 mm from the excitation location.
Excitation was performed for three different wavelengths and
the fluorescence signal was recorded at the rising edge of the
excitation process, as shown in Fig. 3.

5. COMPARISON OF TWO-PHOTON
CROSS-SECTION CALCULATION WITH
EXPERIMENT

Cross-section calculations are reported for eight excitation
lines (192.749 nm, 193.494 nm, 193.947 nm, 202.316 nm,
204.196 nm, 212.556 nm, 214.769 nm, 216.667 nm) in
Tables 5–7 for basis sets 1, 2, and 3, respectively; these cross-
section calculations are compared to three sets of excitation
spectrum data in Fig. 3 with good agreement. The first exper-
imental data set is from the previously discussed nanosecond
excitation at 212.556 nm, 214.769 nm, and 216.667 nm.
Excitation lines at lower wavelengths with the setup are not
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currently accessible. Additionally, we present the Richardson
et al. [23] excitation spectrum from a femtosecond excitation
at 202.316 nm, 204.196 nm, 212.556 nm, 214.769 nm, and
216.667 nm. This spectrum approximates the impulse/natural
response of the Kr atom. Due to the short timescales of excita-
tion of Richardson et al. [23], and due to the closely clustered
energies of eight, two-photon excited krypton states, the
two-photon cross-section can be compared directly to the
fluorescence results. The plotted, relative fluorescence signal
magnitudes for 212.556 nm and 214.769 nm excitation of
Grib et al. [24] also agree with both the Richardson et al. [23]
excitation spectrum and our excitation spectrum, regardless of
fs- or ns-laser excitation. Normalized experimental excitation
data are listed in Table 8 for all considered data sets. In Fig. 4,
comparison is also made to the single-path approximation,
whose cross-section values are listed in Table 9. Single-path
approximation is unable to reconstruct the experimentally
observed excitation spectrum, but it can obtain rough estimates
of cross-sections.

The convergence of the summation over the intermedi-
ate basis set |k〉 is shown in Tables 5–7, which agrees with the
convergence criterion of Eq. (13): nmax ≤ 7.

In Table 7, the calculated cross-section for 214.769 nm
excitation is 4.18× 10−35 cm4. This cross-section agrees well
with the experimentally measured 214.769 nm two-photon
cross-section of Dakka et al. [46]: 5.2± 2.2× 10−35 cm4. This
validates the order of magnitude of calculated cross-sections for
basis set 3.

Overall, the comparison of the calculated two-photon cross-
sections with the experimental data of multiple research groups
is good for lines between 200 and 220 nm. Cross-sections for
lines between 190 and 200 nm are predictions calculated by the
method described within this paper.

6. CONCLUSION

This paper presents multi-path, two-photon excitation
cross-section calculations for krypton that compare well to
experiment for lines between 200 and 220 nm. Cross-sections
were also calculated for excitation wavelengths lying between
190 and 200 nm.

To make these calculations, a hybrid method was used, con-
sisting of OSs, and where those are unlisted in the NIST data,
QDT to evaluate reduced matrix elements 〈Er 〉 and purely radial
matrix elements 〈r 〉. QDT was used to predict the sign of tabu-
lated and calculated OSs from NIST. Including the transition
pathways unlisted in the NIST data was key to increasing the
accuracy of the calculation. These pathways were constructed
from a finite basis of states consisting of 4p , 5s, 6s, 7s, 5p , 6p ,
4d , 5d , and 6d orbitals.

The two-photon cross-section analysis revealed the sym-
metric behavior of the transition matrix element M(2)

f g with
respect to variable exchange f ↔ g ; the symmetric behavior

of the reduced matrix element 〈i |ε̂ · Er | j 〉 with respect to index
exchange i↔ j ; and the hydrogenic behavior of the excited
states of Kr.

Most importantly, this work provides a fundamental physi-
cal understanding in identifying the optimal Kr fluorescence
excitation line (i.e., Kr-PLIF or KTV). From this work, and
the successful comparison to experiment from our laboratory
and those in the literature, we conclude that the optimal line is
212.556 nm for Kr-PLIF and single-laser KTV. Note that two-
laser KTV has an optimal write-laser excitation of 216.667 nm,
but the supporting details for that assertion are not included
here for brevity.

APPENDIX A: TABLES OF ATOMIC DATA, INPUT
PARAMETERS, AND CALCULATION RESULTS

Here, we provide data tables (Tables 3 and 4) for krypton states
and input parameters from which to form Kr radial wave func-
tions, and calculation result tables in Tables 5–7 that justify

Table 3. Input Parameters for Quantum-Defect Radial
Wave Functions

a, b, c

Index
State (Term
Symbol)

d n l E (eV) Im λL (nm)

G 4p61 S0 4 1 –13.9996053 – –
1 (2P o

3/2)5s 2
[3/2]o1 5 0 –3.96720476 3 –

2 (2P o
3/2)5s 2

[3/2]o2 5 0 –4.08437309 2 –
3 (2P o

1/2)5s 2
[1/2]o1 5 0 –3.35597053 3 –

4 (2P o
1/2)5s 2

[1/2]o0 5 0 –3.43719109 2 –
5 (2P o

3/2)5p2
[1/2]0 5 1 –2.33357724 3 212.556

6 (2P o
3/2)5p2

[3/2]2 5 1 –2.45378261 1 214.769
7 (2P o

3/2)5p2
[1/2]1 5 1 –2.69615013 2 219.374

8 (2P o
3/2)5p2

[5/2]3 5 1 –2.55655804 3 216.698
9 (2P o

3/2)5p2
[5/2]2 5 1 –2.55494904 1 216.667

10 (2P o
3/2)5p2

[3/2]1 5 1 –2.47348948 1 215.136
11 (2P o

1/2)5p2
[3/2]2 5 1 –1.85595245 2 204.196

12 (2P o
1/2)5p2

[1/2]0 5 1 –1.74313881 2 202.316
13 (2P o

1/2)5p2
[1/2]1 5 1 –1.85917847 1 204.250

14 (2P o
1/2)5p2

[3/2]1 5 1 –1.89925407 1 204.927
15 (2P o

3/2)6p2
[1/2]0 6 1 –1.13480243 3 192.749

16 (2P o
3/2)6p2

[3/2]2 6 1 –1.18427475 3 193.494
17 (2P o

3/2)6p2
[5/2]2 6 1 –1.21421328 2 193.947

18 (2P o
1/2)6s 2

[1/2]1 6 0 –0.963121959 2 –
19 (2P o

3/2)6s 2
[3/2]1 6 0 –1.614321866 1 –

20 (2P o
1/2)7s 2

[1/2]1 7 0 –0.885709772 1 –
21 (2P o

3/2)4d 2
[3/2]1 4 2 –1.645049675 1 –

22 (2P o
3/2)5d 2

[1/2]1 5 2 –1.129823313 2 –
23 (2P o

3/2)6d 2
[3/2]1 6 2 –0.577230406 1 –

24 (2P o
3/2)6d 2

[1/2]1 6 2 –0.649464393 3 –
aThis table also provides the basis of states used to calculate two-photon tran-

sition matrix element. Data were obtained from NIST [36].
bStates |5〉, |6〉, |9〉, |11〉, |12〉, |15〉, |16〉, and |17〉 are of critical interest for

the laser excitation lines considered in this paper.
cThe λL column lists the laser excitation wavelength required for two-photon

excitation, as measured in vacuum.
dTwo notations were used. (1) For the Kr ground state, Russell–Saunders

2S+1 L J notation is used (LS coupling). (2) For excited Kr states, Racah
(2S1+1 P o

J1
) nl (2S1+1)

[K ]oJ notation is used (L S1 coupling). EJ = EK + Es and
EK = EL + ES1 [36]. S1 is the total electron spin of the ion, s is the spin of the

excited electron, and L is the total orbital angular momentum. ES = ES1 + Es .
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Table 4. Calculation of Einstein Coefficients Using Quantum-Defect Functions and Comparison with NIST
Experimental Data

a
[36]

NIST Quantum-Defect Theory

Transition |i〉→ | j〉 λi j (nm) A i j (1/s) Acc. 3 A i j (1/s) % Error

|23〉→ |g 〉 92.3713 1.14× 108 C 4.16× 107 63.%
|24〉→ |g 〉 92.8711 3.87× 106 C 2.64× 105 93.2%
|22〉→ |g 〉 96.3374 3.35× 107 C 2.13× 107 36.3%
|20〉→ |g 〉 94.5441 2.81× 108 C 1.0450× 108 62.8%
|18〉→ |g 〉 95.1056 2.58× 107 C 6.8928× 107 167.2%
|19〉→ |g 〉 100.1061 3.42× 108 C 2.68× 108 21.5%
|21〉→ |g 〉 100.3550 1.82× 108 C 1.37× 108 24.8%
|3〉→ |g 〉 116.4867 3.09× 108 A+ 2.33× 108 24.5%
|1〉→ |g 〉 123.5838 2.98× 108 A+ 4.97× 108 66.7%
|15〉→ |2〉 427.5172 1.99× 106 C+ 1.74× 106 12.7%
|16〉→ |1〉 437.7351 3.74× 106 B 2.45× 106 34.4%
|15〉→ |1〉 445.5168 3.97× 105 B 4.92× 105 23.9%
|17〉→ |1〉 450.3617 7.8× 105 C 4.59× 106 488.7%
|5〉→ |1〉 758.7414 4.310× 107 A+ 4.77× 107 10.8%
|6〉→ |2〉 760.1546 2.732× 107 A A 2.78× 107 1.8%
|12〉→ |3〉 768.7361 4.064× 107 A A 2.98× 107 26.8%
|10〉→ |2〉 769.6658 4.27× 106 A 2.74× 107 540.9%
|13〉→ |4〉 785.6984 2.041× 107 A 2.14× 107 5.0%
|14〉→ |4〉 806.1721 1.583× 107 B+ 2.19× 107 38.6%
|8〉→ |2〉 811.5132 3.610× 107 A A A 3.50× 107 3.10%
|6〉→ |1〉 819.2308 8.94× 106 A 2.75× 107 207.3%
|11〉→ |3〉 826.5514 3.416× 107 A A 2.93× 107 14.2%
|9〉→ |1〉 877.9161 2.217× 107 A A 2.43× 107 9.66%
|7〉→ |3〉 893.1145 2.289× 107 A 2.24× 107 2.02%

aNIST estimated accuracy of Einstein coefficient. A A A ≤ 0.3%, A A ≤ 1%, A ≤ 3%, B+≤ 7%, B ≤ 10%, C+≤ 18%, C ≤ 25%.

Table 5. Two-Photon Cross-Sections Using Basis Set 1: 5s, 6s, and 7s States

Basis Basis Set 1: |g 〉, |1〉, |2〉, ... |20〉

Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞
σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞

192.749 7.02× 10−37 2.29× 10−47 0.005 1.73× 10−36 5.65× 10−47 0.016
193.494 5.01× 10−37 1.64× 10−47 0.003 3.70× 10−38 1.21× 10−48 0.0003
193.947 7.28× 10−37 2.39× 10−47 0.005 1.25× 10−37 4.10× 10−48 0.001
202.316 2.17× 10−35 7.39× 10−46 0.151 6.67× 10−37 2.27× 10−47 0.006
204.196 2.55× 10−35 8.74× 10−46 0.178 3.84× 10−37 1.32× 10−47 0.004
212.556 1.39× 10−34 4.91× 10−45 1.000 1.03× 10−34 3.63× 10−45 1.000
214.769 5.56× 10−35 1.98× 10−46 0.404 3.30× 10−35 1.18× 10−45 0.324
216.667 6.23× 10−35 2.24× 10−46 0.455 3.92× 10−35 1.41× 10−45 0.388

Table 6. Two-Photon Cross-Sections Using Only Basis Set 2: 5s, 6s, 7s, and 4d States

Basis Basis Set 2: |g 〉, |1〉, |2〉, ... |21〉

Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞
σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞

192.749 2.56× 10−35 8.37× 10−46 0.094 2.80× 10−35 9.15× 10−46 0.133
193.494 9.85× 10−35 7.42× 10−46 0.084 1.60× 10−35 5.26× 10−46 0.077
193.947 1.73× 10−35 5.67× 10−46 0.064 1.20× 10−35 3.93× 10−46 0.057
202.316 1.04× 10−34 3.55× 10−45 0.400 1.95× 10−35 6.61× 10−46 0.0963
204.196 9.85× 10−35 3.37× 10−45 0.381 1.57× 10−35 5.39× 10−46 0.0784
212.556 2.51× 10−34 8.86× 10−45 1.000 1.94× 10−34 6.87× 10−45 1.000
214.769 1.32× 10−34 4.71× 10−45 0.531 3.95× 10−35 1.41× 10−45 0.205
216.667 1.38× 10−34 4.95× 10−45 0.559 6.34× 10−35 2.28× 10−45 0.331
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Table 7. Two-Photon Cross-Sections Using Only Basis Set 3: 5s, 6s, 7s, 4d, 5d, and 6d States

Basis Basis Set 3: |g 〉, |1〉, |2〉, ... |24〉

Theory Quantum-Defect Quantum-Defect with Oscillator Strengths

λL (nm) σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞
σ (2)o (cm4) σ (2) = σ (2)o g (2ωL) (cm4 · s) σ (2)

||σ (2)||∞

192.749 6.53× 10−35 2.13× 10−45 0.206 8.25× 10−35 2.70× 10−45 0.323
193.494 5.31× 10−35 1.74× 10−45 0.198 5.08× 10−35 1.66× 10−45 0.199
193.947 4.46× 10−35 1.47× 10−45 0.142 4.43× 10−35 1.45× 10−45 0.174
202.316 1.46× 10−34 4.96× 10−45 0.479 4.17× 10−35 1.42× 10−45 0.170
204.196 1.32× 10−34 4.53× 10−45 0.438 3.25× 10−35 1.11× 10−45 0.133
212.556 2.92× 10−34 1.03× 10−44 1.000 2.36× 10−34 8.34× 10−45 1.000
214.769 1.62× 10−34 5.79× 10−45 0.559 4.18× 10−35 1.49× 10−45 0.179
216.667 1.67× 10−34 6.01× 10−45 0.581 6.33× 10−35 2.27× 10−45 0.272

Table 8. Experimental Kr Excitation Signal
Normalized Against 212.556 nm Excitation Signal

λL (nm) 202.316 204.196 212.556 214.769 216.667

Richardson et al.
fs-excitation

0.20 0.13 1.00 0.21 (–)

Grib et al.
fs-excitation

(–) (–) 1.00 0.153 (–)

Grib et al.
ns-excitation

(–) (–) 1.00 0.132 (–)

Present work
ns-excitation

(–) (–) 1.00 0.319 0.290

Table 9. Single-Path Approximation Calculations

λL (nm) State |k〉 State | f 〉 σ (2)o (cm4) σ (2) (cm4 · s) σ (2)

||σ (2)||∞

192.749 |1〉 |15〉 4.73× 10−37 1.55× 10−47 0.016
193.494 |1〉 |16〉 1.04× 10−37 3.40× 10−48 0.004
193.947 |1〉 |17〉 2.01× 10−37 6.60× 10−48 0.007
202.316 |3〉 |12〉 1.40× 10−35 4.75× 10−46 0.496
204.196 |3〉 |11〉 2.80× 10−35 9.57× 10−46 1.000
212.556 |1〉 |5〉 1.72× 10−35 6.08× 10−46 0.635
214.769 |1〉 |6〉 8.54× 10−35 3.05× 10−46 0.318
216.667 |1〉 |9〉 2.50× 10−35 8.98× 10−46 0.939

our choice of basis for the two-photon excitation of krypton
in the 190–220 nm range. For comparison to our calculated
cross-section results, we also tabulate experimental excitation
fluorescence, obtained in our lab and the literature, in Table 8,
and we tabulate single-path approximation results in Table 9.
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